Security Best Practices
for Amazon Elastic Kubernetes Service (EKS)

Jeremy Cowan, Principal SA
Containers
Agenda

How do you solve a problem like containers?
EKS Shared Responsibility Model & Security Pillars

Security best practices

- Hosts
- Container images
- Identity and Access Management (IAM)
- Network
- Pod and runtime
- Auditing and forensics

Closing thoughts
Challenges posed by containers

Processes running on a shared kernel
Isolation implemented by Linux namespaces and cgroups
Short lifespans
Traditional/legacy security software is rarely container-aware
 • Firewalls
 • IDS/IPS
 • DLP
 • Forensics
Warrants a different approach
Shared Responsibility Model
EKS with self-managed workers

- Customer Data
- Container Images, Source Code, IAM
- Network Policies
- RBAC Bindings
- Quotas & Limit Ranges
- HPA & VPA
- QoS and Pod Priority
- Pod Security Policies
- Pod Disruption Bets
- Quotas & Limits
- Pods
- Custom Add-ons

EKS Cluster Configuration

- Worker Node Scaling
- VPC Configuration
- OS, Kubelet, CRI & AMI Configuration

Kubernetes Control Plane

- API Server
- Controller Manager
- Scheduler

AWS Responsibility

Customer Responsibility
EKS with managed node groups (current)

CUSTOMER DATA

CONTAINER IMAGES, SOURCE CODE, IAM

NETWORK
RBAC Bindings
QUOTAS & LIMIT RANGES
HPA & VPA
QOS AND Pod PRIORITY
POD SECURITY POLICIES
POD DISRUPTION BUDGETS
CLUSTER ADD-ONS

EKS CLUSTER CONFIGURATION

WORKER NODE SCALING

VPC CONFIGURATION

OS, KUBELET, CRI & AMI CONFIGURATION*

KUBERNETES CONTROL PLANE

API SERVER
CONTROLLER MANAGER
SCHEDULER
ETCD

CUSTOMER RESPONSIBILITY

AWS RESPONSIBILITY

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.
Security Pillars
Container security tenets and epics

Tenets

- All-encompassing
- Shared responsibility
- Cloud native

Epics

<table>
<thead>
<tr>
<th>Core 5 Security Epics</th>
<th>Augmenting the Core 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity & Access Management</td>
<td>Secure CI/CD: DevSecOps</td>
</tr>
<tr>
<td>Logging & Monitoring</td>
<td>Compliance Validation</td>
</tr>
<tr>
<td>Infrastructure Security</td>
<td>Resilience</td>
</tr>
<tr>
<td>Data Protection</td>
<td>Configuration & Vulnerability Analysis</td>
</tr>
<tr>
<td>Incident Response</td>
<td>Security Big Data & Analytics</td>
</tr>
</tbody>
</table>
Container security onion model: defense in depth

- full blown distro (AL2) vs. container-optimized distribution
- multi-tenancy requirements
- gotchas: Linux packages/CVEs, leaks, GDPR (in Europe)

- runtime/standards (OCI)
- immutability of images
- all containers share a kernel (mitigation: Firecracker)
- gotchas: unnecessary privileged users, no scans, trust

- code analysis
- source available?
- gotchas: huge surface, many languages

- sensitive config (passwords, API keys, etc.)
- gotchas: commits-to-source, non-separated access (dev has cleartext password)

- sanitizing user input
- static code analysis
- gotchas: log-leaking

- business core data
- Personal Identifiable Information (PII)
- gotchas: leaks, GDPR (in Europe)
EKS Best Practices for Security
Host Security

Use an OS that is optimized for running containers
- EKS Optimized Amazon Linux 2 & Bottlerocket (preview)
- Alternatives: Atomic, Flatcar Linux, RancherOS

Deploy workers onto private subnets

Run Amazon Inspector to continually assess alignment with best practices and compliance requirements
- kube-bench
- EKS CIS benchmarks

Minimize and audit access
- SSM

Use SELinux (RHEL & CentOS)
- Audit2Allow, Audit2Why, SEAlert
Securing container images

Scan container images
• ECR, Anchore, Clair, Trivy

Use Scratch or a slim base layer

De-fang your images
• Remove files with the SETUID and SETGID bits from the image

Always run as a non-root user
• Lint your Dockerfiles

Use endpoint policies and private endpoints with Elastic Container Registry (ECR)
Identity and Access Management (IAM)

General guidelines
• Practice the principle of least privilege for AWS IAM and k8s RBAC
• Configure EKS cluster endpoint to be PRIVATE
• Periodically audit access to the cluster

IAM
• Use IRSA to assign AWS identities to pods
• Block access to EC2 metadata

Kubernetes
• Use separate services accounts for each application
• Disable mounting of the default SA token
Network security

Allow all traffic is the default policy

Use k8s network policies for restricting E-W traffic within the cluster

Start with a deny-all global policy and incrementally add policies
 • Port 53 (DNS) egress to kube-system
 • Allow all within a namespace

Restrict outbound traffic from pods that don’t need to connect to external services
 • SGs for pods & Cilium (L7 policies)

Encrypt service-to-services traffic with a mesh
 • Alternatives: Select CNI plug-ins & Nitro instances
Pod and runtime security

Use PSPs or OPA/Gatekeeper to implement runtime security measures:

- Deny privileged escalation
- Deny running as root
- Deny mounting hostPath
- Drop Linux capabilities

Compliment PSPs with AppArmor or Seccomp profiles (if necessary)

Use 3rd party solutions

- Aqua, Stackrox, Sysdig Falco, Twistlock
Auditing and forensics

Enable control plane logs

Stream logs from containers to an external log aggregator

Periodically audit Kubernetes control plane and AWS CloudTrail logs for suspicious activity
 • Search for the annotations authorization.k8s.io/decision and authorization.k8s.io/reason to ascertain why a call was allow/denied

Immediately isolate pods you suspect have been compromised
 • Remove/change labels
 • Create network policy to isolate the pod

Cordon the instance (if necessary)
 • Capture volatile artifacts on the worker node, e.g. memory, disk, etc.

kube-forensics
Closing thoughts

- Security is everyone’s responsibility
- Understand the shared responsibility model
- Shift left & DevSecOps
Amazon EKS Best Practices Guide for Security

This guide provides advice about protecting information, systems, and assets that are reliant on EKS while delivering business value through risk assessments and mitigation strategies. The guidance herein is part of a series of best practices guides that AWS is publishing to help customers implement EKS in accordance with best practices. Guides for Performance, Operational Excellence, Cost Optimization, and Reliability will be available in the coming months.

How to use this guide

This guide is meant for security practitioners who are responsible for implementing and monitoring the effectiveness of security controls for EKS clusters and the workloads they support. The guide is organized into different topic areas for easier consumption. Each topic starts with a brief overview, followed by a list of recommendations and best practices for securing your EKS clusters. The topics do not need to read in a particular order.

Understanding the Shared Responsibility Model

Thank you!