
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Architectural guidance for

building composable MACH

solutions on AWS

How AWS enables retailers to deliver new features
and experiences to consumers faster

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A MACH architecture, which stands for Microservices based, API-

first, Cloud-native SaaS and Headless (MACH), gives companies a

deeper level of agility—allowing them to deliver new features to

their customers at speed. This architecture has spread from

ecommerce to store systems and is now fundamentally changing

the way retailers assemble commerce solutions.

2

3

Table of contents

Headless ……………………………………………………………...29

Cloud-native SaaS …………………………………………………..24

API-first ……………………………………………………………….18

Introduction …………………………........…………………………..4

Microservices…………………………………………………………..7

AWS Partners in MACH...…………………………………………...34

MACH Architecture …………………........…………………………..5

4

MACH Alliance

The MACH Alliance is a not-for-profit industry body that advocates for open and best-

of-breed enterprise technology ecosystems.

The Alliance is a vendor-neutral institution that provides resources, education and

guidance through industry experts to support companies on their journey.

The MACH Alliance and the associated approach to software architecture has been

recognized by Gartner and Forrester. The terms “composable commerce” and

“headless commerce” are sometimes used as synonyms for MACH. MACH technologies

support a composable enterprise in which every component is pluggable, scalable,

replaceable, and can be continuously improved through agile development to meet

evolving business requirements.

Learn more »

MACH certification

Introduction

“The MACH Alliance are the bouncers

controlling the velvet rope at the

entrance to the Coolest Tech in Town

Club.”

Joe Cicman, Senior Analyst, Digital
Transformation, Forrester

To advance the mission and support growth, the MACH

Alliance established certification standards that help identify

vendors and integrators that embrace MACH philosophies and

offer MACH-certified services. To become an Alliance member

and carry the MACH Certified seal, a company must be in full

compliance.

AWS joined the MACH Alliance in January 2022 as an "Enabler," a category

for companies that provide the underlying infrastructure to support MACH

products and integrations.

https://machalliance.org/
https://machalliance.org/

5

Microservices architecture is a software development approach that breaks

down a complex applications into smaller, independently deployable services.

Building microservices allows you to iterate faster, reduce time to market, and

improve resiliency.

APIs allow different software systems to communicate with each other and

exchange information. They define a contract of service between two

applications. API-first is a design approach that puts APIs at the center of the

solution, making it easier to integrate with other systems and services.

Cloud-native SaaS is a software development approach that takes

advantage of cloud computing resources and services. Using a cloud-native

approach allows you to build highly scalable, flexible, and resilient applications

that can be updated quickly to meet customer’s demands.

Headless is an architecture that separates the front-end from the back-end of

a solution, allowing companies to use different front-end technologies and

platforms. Headless architectures allow you to build solutions that are flexible,

modular, and scalable, making it easier to deliver personalized and engaging

experiences across multiple channels and devices.

Amazon Web Services (AWS) offers a wide range of services that can help

developers build MACH solutions. In this ebook we will dive deeper into each

principle and discuss how to use AWS to build MACH architectures.

Microservices based, API-first,
Cloud-native, and Headless (MACH)

MACH-advanced companies

move faster

Four in five decision makers state that

volatility in the economy has impacted their

organizations’ attitude toward MACH. This

has been one of the key drivers behind 85

percent of organizations increasing the

percentage of their MACH infrastructure in

the past 12 months.

Those companies cite increased ability to

respond to changes in the market faster, to

build and implement new functionality

quicker and reduced costs. They’re also

more likely to say their infrastructure is

keeping up with customer demands and

that they’re ahead of the competition than

those with lower MACH adoption rates.

MACH Global Research 2023 »

https://machalliance.org/newsroom/mach-global-research-2023

6

While MACH architecture offers many benefits, such as increased agility and
scalability, it requires a robust cloud infrastructure to function efficiently. That’s
where AWS comes in.

AWS is the world’s most comprehensive and broadly adopted cloud platform that
provides retailers with a range of services, including compute, storage, database,
and networking. It offers a highly secure and reliable infrastructure that can handle
the demands of MACH architecture, allowing businesses to focus on innovating for
their customers. Here are some of the reasons why great MACH architecture runs on
AWS:

Scalability AWS offers a scalable infrastructure that can grow or shrink on
demand. With AWS, retailers can scale their MACH architecture to meet the
demands of their customers.

High availability AWS provides a highly available infrastructure ensuring that
retailers can deliver seamless experiences to their customers, even during peak
traffic.

Flexibility AWS provides a flexible infrastructure that can adapt to the changing
needs of retailers. It offers a range of over 200 fully featured services, which can be
used to build and deploy MACH architecture, allowing retailers to choose the best
services that fit their requirements.

Security AWS provides a highly secure infrastructure safeguarding retailer’s data
and applications. It offers a range of security services that can be used to secure the
MACH architecture, so retailers can focus on delivering great experiences to their
customers.

Cost-effective AWS provides a cost-effective infrastructure that can help
retailers reduce their infrastructure costs. With AWS, retailers pay only for the
services they use, ensuring that they can optimize their infrastructure costs.

Great MACH runs on AWS

Today, 70% of MACH members

run on AWS—with a large and growing

community of MACH Alliance members

choosing to build great MACH on AWS.

The term “composable

commerce” was popularized by a

Gartner report in 2020.

In the report, Gartner predicted that

“by 2023, organizations that

have adopted a composable

approach will outpace the

commerce approach

competition by 80% in the

speed of feature

implementation,”.

https://www.gartner.com/en/documents/3986490

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Microservices

7

8

Microservices are an architectural and organizational approach to software
development using an agile approach that helps teams work independently. They
speed up deployment cycles, foster innovation and ownership, improve
maintainability and scalability of software applications, and scale organizations
delivering software and services.

With a microservices approach, software is composed of small services that
communicate over well-defined application programming interfaces (APIs) which
can be deployed independently. These services are owned by small autonomous
teams. This agile approach is key to successfully scaling your organization.

Microservices Implementation

AWS has integrated building blocks that support the development of
microservices. Two popular approaches to implement microservices are using
AWS Lambda and using containers.

AWS Lambda is a serverless compute service that runs your code in response to
events and automatically manages the underlying compute resources for you.
Lambda runs your code on high availability compute infrastructure and performs
all the administration of your compute resources. This includes server and
operating system maintenance, capacity provisioning and automatic scaling, code
and security patch deployment, and code monitoring and logging. All you need to
do is supply the code.

Lambda is a good choice for services that require quick response times and low
traffic. Since Lambda functions are only charged for the time they execute, they
are a cost-effective option for services with low to medium traffic. Lambda also
provides automatic scaling and high availability, making it easy to handle sudden
spikes in traffic.

Microservices-based

https://aws.amazon.com/microservices/
https://aws.amazon.com/lambda/

9

Both Amazon ECS and Amazon EKS automatically manage the availability

and scalability of the control plane responsible for scheduling containers,

managing application availability, storing cluster data, and other key

tasks. This allows you to take advantage of all the performance, scale,

reliability, and availability of an AWS infrastructure.

With capacity providers (Amazon ECS) and Kubernetes Cluster Autoscaler

(Amazon EKS) you can automatically scale the infrastructure for tasks and

pods to meet changing demands.

Containers are a better choice for services that require more control over

the environment or need to run for longer periods.

Containers are also more suitable for applications that need to run

continuously or require complex dependencies.

Learn more about Containers at AWS for help choosing the right container

options for your services.

Containers

Container technologies like Docker are a popular choice to

build your microservices due to benefits like portability,

productivity, and efficiency.

On AWS, you can select from the broadest choice of services to

run your containers.

Choose AWS Fargate for scalable, serverless compute for

containers where AWS will manage your infrastructure

provisioning.

For full control over your compute environment, choose to run

your containers on Amazon Elastic Compute Cloud (Amazon

EC2).

For container orchestrators, you can choose either Amazon

Elastic Container Service (Amazon ECS) or Amazon Elastic

Kubernetes Service (Amazon EKS).

Containers at AWS

Containers at AWS »

Run your containers in the most secure, reliable and scalable

environment.

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-capacity-providers.html
https://docs.aws.amazon.com/eks/latest/userguide/autoscaling.html#cluster-autoscaler
https://aws.amazon.com/containers/
https://aws.amazon.com/fargate/
https://aws.amazon.com/ec2
https://aws.amazon.com/ecs
https://aws.amazon.com/eks
https://aws.amazon.com/containers/

10

This means the code, applications, and tools you already use today

with your existing databases should work seamlessly with Amazon

RDS. With Amazon RDS you benefit from the flexibility of being able

to scale the compute resources or storage capacity associated with

your relational database instance. In addition, Amazon RDS makes it

easy to use replication to enhance database availability, improve

data durability, or scale beyond the capacity constraints of a single

database instance for read-heavy database workloads.

NoSQL databases have been designed to favor scalability,

performance, and availability over the consistency of relational

databases. One important element of NoSQL databases is that they

typically don’t enforce a strict schema. NoSQL databases use a

variety of data models for accessing and managing data.

These types of databases are optimized specifically for applications

that require large data volume, low latency, and flexible data

models, which are achieved by relaxing some of the data

consistency restrictions of other databases. AWS offers a wide range

of NoSQL databases, including key-value (Amazon DynamoDB),

document (Amazon DocumentDB (with MongoDB compatibility)),

graph (Amazon Neptune), and search (Amazon OpenSearch Service).

Data Stores

A microservices design principle is Decentralized Data Management,

meaning each microservice should manage its own data, without

relying on other microservices, to ensure scalability and reliability.

AWS provides several purpose-built data store options to use with

your microservices, including in-memory databases, relational

databases, and NoSQL databases.

In-memory databases such as Amazon MemoryDB for Redis and

Amazon ElastiCache are designed to enable minimal response times

by eliminating the need to access disks. In-memory databases are

ideal for applications requiring microsecond response times or have

large spikes in traffic such as gaming leaderboards, session stores,

and real-time analytics.

However, since all data is stored and managed exclusively in the

main memory, in-memory databases risk losing data upon a process

or server failure.

Relational databases are still very popular to store structured data

and business objects. AWS offers seven database engines (Amazon

Aurora with MySQL compatibility, Amazon Aurora with PostgreSQL

compatibility, MySQL, MariaDB, PostgreSQL, Oracle, and SQL

Server) as managed services through Amazon Relational Database

Service (Amazon RDS).

https://aws.amazon.com/nosql/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/documentdb/
https://aws.amazon.com/neptune/
https://aws.amazon.com/opensearch-service/
https://martinfowler.com/articles/microservices.html#DecentralizedDataManagement
http://aws.amazon.com/memorydb
https://aws.amazon.com/elasticache/
https://aws.amazon.com/rds/aurora/?pg=ln&sec=hiw
https://aws.amazon.com/rds/aurora/?pg=ln&sec=hiw
https://aws.amazon.com/rds/mysql/?pg=ln&sec=hiw
https://aws.amazon.com/rds/mariadb/?pg=ln&sec=hiw
https://aws.amazon.com/rds/postgresql/?pg=ln&sec=hiw
https://aws.amazon.com/rds/oracle/?pg=ln&sec=hiw
https://aws.amazon.com/rds/sqlserver/?pg=ln&sec=hiw
https://aws.amazon.com/rds/

11

AWS Cloud Map extends the capabilities of Amazon Route 53’s Auto

Naming APIs by providing a service registry for your cloud resources. This

includes Internet Protocols (IPs), Uniform Resource Locators (URLs), and

Amazon Resource Names (ARNs). It offers an API-based service discovery

mechanism with a faster change propagation and the ability to use

attributes to narrow down the set of discovered resources.

A service mesh is a dedicated infrastructure layer for managing service-

to-service communication within a microservices architecture. A service

mesh can help to simplify service discovery, load balancing, and traffic

management, and can provide visibility and control over network traffic.

AWS App Mesh is a fully managed service mesh that provides traffic

management, observability, and security for microservices. App Mesh can

be integrated with AWS Fargate, Amazon ECS, Amazon EKS, Amazon EC2,

and Kubernetes on EC2, making it easy to manage and monitor

microservices running on these platforms.

One of the primary challenges with microservices architectures

is allowing services to discover and interact with each other.

The distributed characteristics of microservices architectures

not only make it harder for services to communicate, but also

presents other challenges, such as checking the health of those

systems and announcing when new applications become

available.

AWS can help address these challenges, both from a service

discovery and service mesh point-of-view.

Service discovery is the process of locating and connecting to

services in a distributed system.

AWS Cloud Map is a fully managed resource discovery service

that allows you to discover and connect to services by name.

Networking

https://aws.amazon.com/route53/
https://aws.amazon.com/app-mesh/
https://aws.amazon.com/cloud-map/

12

Amazon VPC Lattice is a networking service that consistently connects, monitors,

and secures communications between your services, helping to improve productivity

so that your developers can focus on building features that matter to your business.

You can define policies for network access, traffic management, and monitoring to

connect compute services in a consistent way across instances, containers, and

serverless applications.

As your microservices infrastructure scales Elastic Load Balancing (ELB) allows you to

distribute network traffic to improve application scalability and to deliver

applications with high availability.

For your microservices applications, AWS offers the Application Load Balancer (ALB)

and the Network Load Balancer (NLB):

Application Load Balancer operates at the request level (Layer 7), routing traffic to

EC2 instances, containers, IP addresses, and Lambda functions. ALB provides

advanced request routing based on the content of the request. Application Load

Balancer simplifies and improves the security of your application, by facilitating that

the latest SSL/TLS ciphers and protocols are used at all times.

Network Load Balancer operates at the connection level (Layer 4), routing

connections to EC2 instances, containers, and IP addresses within Amazon VPC. NLB

is ideal for load balancing of both TCP and UDP traffic, capable of handling millions

of requests per second while maintaining ultra-low latencies. Network Load

Balancer is optimized to handle sudden and volatile traffic patterns.

For applications serving global users, AWS helps you improve the availability and

performance of those applications with AWS Global Accelerator. Global Accelerator

provides two global static public IPs that act as a fixed entry point to your

application endpoints, such as ALB’s, NLB’s, Amazon EC2 instances, and elastic IPs.

Global Accelerator always routes user traffic to the optimal endpoint based on

performance, reacting instantly to changes in application health, your user’s

location, and policies you’ve configured.

Networking

https://aws.amazon.com/vpc/lattice/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/application-load-balancer
https://aws.amazon.com/elasticloadbalancing/network-load-balancer
https://aws.amazon.com/global-accelerator/

13

Another popular option, especially for Amazon EKS, is to use

Prometheus. Prometheus is an open-source monitoring and

alerting toolkit that is often used in combination with Grafana

to visualize the collected metrics. Amazon Managed Service for

Prometheus is a Prometheus-compatible monitoring service

that enables you to monitor containerized applications at scale.

With Amazon Managed Service for Prometheus, you can use

the open-source Prometheus query language (PromQL) to

monitor the performance of containerized workloads without

having to manage the underlying infrastructure required to

manage the ingestion, storage, and querying of operational

metrics. You can collect Prometheus metrics from Amazon EKS

and Amazon ECS environments using AWS Distro for

OpenTelemetry or Prometheus servers as collection agents.

A microservices architecture consists of many different services that have to

be monitored. Monitoring and tracing in a distributed environment can be

complex, but AWS has the tools to help you address these.

You can use Amazon CloudWatch to gain system-wide visibility into

resource utilization, application performance, and operational health.

CloudWatch provides a reliable, scalable, and flexible monitoring solution

that you can start using within minutes.

In addition to Amazon CloudWatch, you can also use CloudWatch Container

Insights and CloudWatch Lambda Insights to collect, aggregate, and

summarize metrics and logs from your containerized and serverless

applications and microservices. These features automatically collect metrics

for many resources, such as CPU, memory, disk, and network. They are

aggregated as CloudWatch metrics at the cluster, node, pod, task, and

service level for containerized applications and at the function level for

serverless applications.

Monitoring and Observability

https://prometheus.io/docs/introduction/overview/
https://grafana.com/
https://aws.amazon.com/prometheus/
http://aws.amazon.com/otel/
https://aws.amazon.com/cloudwatch/

14

For Amazon EKS, either Fluent Bit or Fluentd can forward logs to

CloudWatch Logs. Because of its smaller footprint and performance

advantages, Fluent Bit is recommended instead of Fluentd.

It’s often the case that multiple microservices will work together to

handle a single request. Even if every microservice is logging properly

and logs are consolidated in a central system, when an error occurs in

one of the services in the call chain it can be difficult to find all relevant

log messages. AWS X-Ray helps developers analyze and debug

production and distributed applications.

The idea of AWS X-Ray is the use of correlation IDs, which are unique

identifiers attached to all requests and messages related to a specific

event chain. The trace ID is added to HTTP requests in specific tracing

headers and included in the response. You can use X-Ray with

applications running on EC2, ECS, Lambda, and AWS Elastic Beanstalk.

In addition, the X-Ray SDK automatically captures metadata for API

calls made to AWS services using the AWS SDK and provides add-ons

for MySQL and PostgreSQL drivers.

Monitoring and Observability

Amazon Managed Service for Prometheus is often used in

combination with Amazon Managed Grafana. Amazon Managed

Grafana makes it easy to query, visualize, alert on and understand

your metrics no matter where they are stored. With Amazon

Managed Grafana, you can analyze your metrics, logs, and traces

without having to provision servers, configure and update

software, or do the heavy lifting involved in securing and scaling

Grafana in production.

Microservices enable you to ship more often and encourage

engineering teams to run experiments on new features,

consistent logging becomes critical for troubleshooting and

identifying issues. On AWS, you can use Amazon CloudWatch

Logs to monitor, store, and access your log files. For applications

running on Amazon EC2 instances, a daemon is available to send

log files to CloudWatch Logs. Lambda functions natively send

their log outputs to CloudWatch Logs and Amazon ECS includes

support for the awslogs log driver that enables the centralization

of container logs to CloudWatch Logs.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-EKS-logs.html#Container-Insights-EKS-logs-performance
https://aws.amazon.com/xray/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/grafana/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_awslogs.html

15

AWS Cloud Development Kit

The AWS Cloud Development Kit (AWS CDK) lets you

build reliable, scalable, cost-effective applications in

the cloud with the considerable expressive power of

a programming language. The AWS CDK supports

TypeScript, JavaScript, Python, Java, C#/.Net, and

Go.

Developers can use one of these supported

programming languages to define reusable cloud

components known as Constructs. You can then

compose these together into Stacks and Apps. You

can learn more about the AWS CDK concepts in the

AWS Documentation.

AWS Serverless Application Model

The AWS Serverless Application Model (AWS SAM) is a

convenient way to define serverless applications. AWS

SAM is natively supported by AWS CloudFormation

and defines a simplified syntax for expressing

serverless resources.

To deploy your application, specify the resources you

need as part of your application, along with their

associated permissions policies in an AWS

CloudFormation template, package your deployment

artifacts, and deploy the template.

AWS provides a set of flexible services designed to enable companies to more rapidly and reliably build and deliver applications.

These services simplify provisioning and managing infrastructure, deploying application code, and automating software release

processes.

To provision and manage your infrastructure we recommend the AWS Cloud Development Kit (CDK) and the AWS Serverless

Application Model (SAM):

Release Process

https://aws.amazon.com/cdk/
https://docs.aws.amazon.com/cdk/v2/guide/core_concepts.html
https://github.com/awslabs/serverless-application-model
https://aws.amazon.com/cloudformation/

16

AWS developer tools

The AWS Developer Tools help you securely store and version your

application's source code, and automatically build, test, and deploy

your application.

AWS CodeCommit is a fully managed source control service that

enables secure and highly scalable private Git repositories. You can

use CodeCommit to securely store anything from source code to

binaries, and it works seamlessly with your existing Git tools.

AWS CodeBuild is a fully managed build service that compiles

source code, runs tests, and produces software packages that are

ready to deploy. CodeBuild scales continuously and processes

multiple builds concurrently, so your builds are not left waiting in a

queue.

AWS CodeDeploy is a fully managed deployment service that

automates software deployments to various compute services,

such as Amazon EC2, Amazon ECS, and AWS Lambda. CodeDeploy

allows you to rapidly release new features, helps avoid downtime

during application deployment, and handles the complexity of

updating your applications. You can use CodeDeploy to automate

software deployments, eliminating the need for error-prone

manual operations.

AWS CodePipeline is a fully managed continuous delivery service that

helps you automate your release pipelines for fast and reliable

application and infrastructure updates. CodePipeline automates the

build, test, and deploy phases of your release process every time

there is a code change, based on the release model you define. This

enables you to rapidly and reliably deliver features and updates. You

can also integrate CodePipeline with third-party services such as

GitHub or with your own custom plugin. Microservices systems can

grow to become complex systems. Understanding how the system

behaves under stress and identifying potential issues before they

impact business operations become the key value for continuous

business operation.

AWS Fault Injection Simulator (FIS) is a managed service that enables

you to perform fault injection experiments on your AWS workloads.

Fault injection is based on the principles of chaos engineering. These

experiments stress an application by creating disruptive events so

you can observe how your application responds. You can then use

this information to improve the performance and resiliency of your

applications.

Learn more about how to repeatedly test the impact of fault actions

as part of your software delivery process.

Amazon Builders’ Library

Learn more about how Amazon builds and operates software at scale.

Visit Amazon Builders’ Library »

https://aws.amazon.com/products/developer-tools/
https://aws.amazon.com/codecommit/
https://aws.amazon.com/codebuild
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/fis/
https://en.wikipedia.org/wiki/Chaos_engineering
https://aws.amazon.com/blogs/architecture/chaos-testing-with-aws-fault-injection-simulator-and-aws-codepipeline/
https://aws.amazon.com/builders-library/

Read the story »

The story of The Very Group's commerce

modernization

Learn about The Very Group’s journey to modern commerce from the company’s

previous monolithic architecture to the commercetools and AWS solution, all of the

strengths of MACH (Microservices-based, API-first, Cloud-native, Headless) and

composable commerce architecture with the benefits this foundation has brought to the

business.

AWS Partner MACH spotlight

17

https://commercetools.com/blog/mach-architecture-from-commercetools-cloud-nativity-from-aws-the-very-group-commerce-modernization
https://commercetools.com/
https://commercetools.com/

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

API-first

18

19

API-first

APIs are mechanisms that enable two software components to communicate with

each other using a set of definitions and protocols. APIs define a contract of

service between two applications. This contract characterizes how the two

communicate with each other using requests and responses. Their API

documentation contains information on how developers are to structure those

requests and responses.

AWS provides several tools and services to build and deploy APIs quickly and

efficiently.

REST vs. GraphQL APIs

REST (Representational State Transfer) and GraphQL are two popular API styles

used for building web applications. The choice of REST or GraphQL depends on

the requirements of your application. REST is a good choice for simple

applications that require fast performance, while GraphQL is suitable for complex

applications that require flexibility and scalability.

REST is a well-established API style that uses HTTP methods like GET, POST, PUT,

and DELETE to access resources. It follows a stateless client-server architecture.

The client sends a request to the server, which sends back a response. RESTful

APIs are easy to understand, cacheable, and scalable.

For building REST-based APIs, we recommend Amazon API Gateway, a fully

managed service enables developers to create, publish, maintain, monitor, and

secure APIs at any scale. API Gateway handles all the tasks involved in accepting

and processing up to hundreds of thousands of concurrent API calls, including

traffic management, authorization and access control, throttling, monitoring, and

API version management.

For simplifying REST API integration, API Gateway can generate client SDKs for a

number of platforms to quickly test new APIs from your applications and

distribute to third-party developers.

https://aws.amazon.com/what-is/api/
https://aws.amazon.com/api-gateway/

20

GraphQL is a newer API style that uses a single endpoint to access data using a

query language. GraphQL allows clients to specify the data they need, avoiding

over-fetching or under-fetching of data. It can improve performance and reduce

network traffic.

For building GraphQL-based APIs, we recommend AWS AppSync, which is a

managed service that uses GraphQL to make it easy for applications to get

exactly the data they need.

With AWS AppSync, you can build scalable applications, including those

requiring near real-time updates, on a range of data sources such as NoSQL data

stores, relational databases, HTTP APIs, and your custom data sources with AWS

Lambda.

For mobile and web apps, AWS AppSync additionally provides local data access

when devices go offline, and data synchronization when they are back online.

Securing API calls

It’s important to secure your APIs in order to identify the user making the API

call. There are different types of authentication methods, such as basic

authentication, token-based authentication, and secure keys.

Basic Authentication

Basic authentication is a simple authentication method that involves sending a

username and password in the request headers. The server verifies the

credentials and sends back a response with the requested data. Basic

authentication is not considered a secure method as the credentials are sent in

clear text, making them vulnerable to interception. It should only be used for

low-risk applications or in conjunction with other authentication methods.

REST vs. GraphQL APIs

https://aws.amazon.com/appsync/
https://aws.amazon.com/lambda/

21

JSON Web Tokens

JSON Web Tokens is a standard for securely

transmitting information between parties as a JSON

object. JWT tokens are digitally signed to ensure

their authenticity and can include information about

the user, such as user ID and user roles.

To authenticate a user using JWT, the server

generates a token after successful authentication

and sends it to the client. The client includes the

token in subsequent API calls to authenticate itself.

The server verifies the token's signature and extracts

the user information from the token.

OAuth

OAuth is an authentication and authorization

protocol widely used in modern web applications.

OAuth allows third-party applications to access

resources on behalf of a user without exposing the

user's credentials. OAuth involves three entities: the

user, the client (the third-party application), and the

authorization server (the server that hosts the

protected resources).

The client requests authorization from the user to

access the protected resources. The user grants

authorization, and the client receives an access token

from the authorization server. The client includes the

access token in subsequent API calls to authenticate

itself.

Token-based authentication is a widely used authentication method for APIs. It involves generating a token after successful authentication

and sending it to the client. The client includes the token in subsequent API calls to authenticate itself.

Two popular token types are JSON Web Tokens (JWT) and OAuth access token.

Token-based Authentication

22

Secure keys are another mechanism to secure API calls. Secure keys are generated by the server and sent to the client after successful

authentication. The client includes the secure key in subsequent API calls to authenticate itself.

Secure keys can be of two types: API keys and HMAC keys.

API keys are simple, randomly generated keys used to authenticate clients to the API. The server generates an API key after successful

authentication and sends it to the client. The client includes the API key in subsequent API calls to authenticate itself. API keys can be used

for rate limiting or access control. However, they are not considered a secure method as the API key can be intercepted or stolen, allowing

unauthorized access to the API.

HMAC (Hash-based Message Authentication Code) keys are more secure keys used to authenticate clients to the API. HMAC keys involve a

shared secret key between the server and the client. The client generates a signature using the secret key and includes it in the request

headers. The server verifies the signature using the secret key. HMAC keys provide message integrity, authenticity, and non-repudiation.

They are widely used by popular APIs such as Amazon Simple Storage Service (Amazon S3) and Twitter.

Secure Keys

How to Build a Public Facing API

Explore technical content series crafted by AWS Startup Solutions

Architects to help guide you in setting the foundations needed to

start building quickly and easily.

Read AWS guidance »

https://aws.amazon.com/startups/start-building
https://aws.amazon.com/startups/start-building/how-to-build-a-public-facing-API/

Read the story »

Constructor Product Discovery and Search in AWS Marketplace »

Home living ecommerce company home24

drives double-digit growth in search conversion

rates after implementing Constructor.io

home24 achieves significant growth with search using Constructor.io on AWS.

AWS Partner MACH spotlight

23

https://constructor.io/home24-constructor/
https://aws.amazon.com/marketplace/pp/prodview-tvh4ukb6dfqqe?sr=0-1&ref_=beagle&applicationId=AWSMPContessa
https://constructor.io/
https://constructor.io/

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cloud-native SaaS

24

Cloud-native SaaS
Cloud-native is the software approach of building, deploying, and managing

modern applications in cloud computing environments. Modern companies want

to build highly scalable, flexible, and resilient applications that they can update

quickly to meet customer demands. To do so, they use modern tools and

techniques that inherently support application development on cloud

infrastructure.

These cloud-native technologies support fast and frequent changes to

applications without impacting service delivery—providing adopters with an

innovative, competitive advantage.

The Cloud Native Computing Foundation (CNCF)—an open-source foundation

that helps organizations kick-start their cloud-native journey—defines the

technological blocks of cloud-native architecture as immutable infrastructure,

microservices, declarative APIs, containers, and service meshes.

A common pattern for cloud-native applications is event-driven architecture.

Event-driven architecture is a modern architecture pattern built from small,

decoupled services that publish, consume, or route events. An event represents a

change in state, or an update, (for example, an item placed in a shopping cart or

an order becoming ready to ship).

Event-driven architecture promotes loose coupling between producer and

consumer services, which makes this architecture approach particularly suitable

for MACH solutions. AWS services commonly produce or consume events, making

it easy to build solutions with an event-driven architecture.

25

https://aws.amazon.com/what-is/cloud-native/
https://www.cncf.io/
https://aws.amazon.com/event-driven-architecture/

Cloud-native SaaS
AWS services such as Amazon EventBridge, Amazon Simple Notification Service

(Amazon SNS), Amazon Simple Queue Service (Amazon SQS), and AWS Step

Functions include features that help customers write less boilerplate code and

build event-driven architecture faster:

You can use Amazon EventBridge to build event buses for event-driven

applications at scale using events from SaaS applications, other AWS services, or

custom applications. EventBridge applies rules to route events from event sources

to different targets. Targets can include AWS services such as AWS Lambda, Step

Functions, and Amazon Kinesis, or any HTTP endpoint through EventBridge API

destinations. AWS Partners can enhance and extend their platform by publishing

their events to EventBridge. They can rely on EventBridge to manage the routing

of those events to customers in a reliable and secure manner. Learn more in the

EventBridge Partner Onboarding Guide.

A popular integration for event-driven architecture use cases is Step Functions, in

which events trigger specific workflows. AWS Step Functions includes Workflow

Studio, a low-code visual workflow designer that builders use to orchestrate

different AWS services. You can use Workflow Studio to build distributed

applications, automate IT and business processes, and build data and machine

learning pipelines using AWS services.

We recommend using Amazon SNS to build applications that react to high

throughput and low latency events published by other applications, microservices,

or AWS services. You can also use Amazon SNS for applications that need very

high fanout to thousands or even millions of endpoints.

Amazon SQS offers a secure, durable, and available hosted queue service that you

can use to integrate and decouple distributed software systems and components.

Amazon SQS offers common constructs such as dead-letter queues and cost

allocation tags.

26

https://aws.amazon.com/eventbridge/
https://aws.amazon.com/sns/
https://aws.amazon.com/sqs/
https://aws.amazon.com/step-functions
https://aws.amazon.com/lambda/
https://aws.amazon.com/kinesis/
https://docs.aws.amazon.com/eventbridge/latest/onboarding/amazon_eventbridge_partner_onboarding_guide.html
https://docs.aws.amazon.com/step-functions/latest/dg/workflow-studio.html

Cloud-native SaaS

Modern cloud-native applications are often delivered through a Software-as-a-Service (SaaS) model. Software-as-a-Service is a cloud-

based software model that delivers applications to end-users through an internet browser. SaaS vendors host services and applications

for customers to access on-demand.

The SaaS model gives businesses access to powerful software that would previously have been too expensive or resource-intensive to

run on their own.

Cloud-native SaaS solutions are composed of several independent services, following the microservices approach described earlier. The

cloud-native SaaS model allows software providers to respond to customers’ demands quickly and safely without disruptions.

AWS SaaS Factory Program

For AWS Partners building SaaS application, AWS offers the AWS SaaS Factory Program. This program is designed to help AWS Partners

at any stage of the SaaS journey, from building new products to migrate existing applications, or optimize SaaS solutions on AWS.

The AWS SaaS Factory Program give AWS Partners direct access to technical and business content, best practices, solution architects, and

SaaS experts that can guide and help you accelerate delivery of SaaS solutions on AWS.

“The data tells us that too many companies are stuck keeping the upgrade wheel turning. If you add the cost of

time and business stand still, the absolute cost is much higher. At the same time, fewer companies see

themselves as agile early adopters, and fewer also see themselves as being ahead of the competition compared

to our research a year ago. The pace of transformation is relentless but the cost of not innovating is much

higher.

While transitioning to MACH is no small undertaking, continuing the status quo is an ongoing, big undertaking,

especially for larger organizations, which needs addressing. We’re not going to wipe legacy out of the picture

overnight. However, those moving toward MACH are better equipped to mitigate future obstacles.”

Casper Rasmussen, MACH Alliance President

27

https://aws.amazon.com/what-is/saas/
https://aws.amazon.com/partners/programs/saas-factory

Read the story »

Innovating Foodl, Netherland’s first B2B food

services marketplace

Mindcurv partnered with Foodl to launch the first open food marketplace in the

Netherlands. Read more to learn how Foodl enabled a composable digital shop, where

each component was plug-and-play, scalable, and replaceable.

AWS Partner MACH spotlight

28

https://mindcurv.com/en/cases/innovating-foodl-netherlands-b2b-food-services-marketplace/
https://mindcurv.com/en/
https://mindcurv.com/en/

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Headless

29

Headless
Headless architecture is an architecture pattern in which the front-end (for

example, the user interface) and the back-end (for example, the business logic and

data storage) are decoupled from each other. This means that the front-end and

back-end are developed and maintained independently, and communicate with

each other through APIs.

In a headless architecture, the front-end can be any device or application (such as

web browsers, mobile apps, or IoT devices) and the back-end is typically

implemented by microservices that provide data and functionality through APIs.

Headless architectures allow for fast innovation at the front-end and sales

channels, while providing the biggest feature set and smooth integration in the

back-end systems (CRM, ERP, finance, billing, reporting) out of the box.

One common approach that has gained popularity is micro-frontend architectures.

The micro-frontend architecture introduces microservice development principles

to front-end applications. In a micro-frontend architecture, development teams

independently build and deploy “child” front-end applications.

These applications are combined by a “parent” front-end application that acts as a

container to retrieve, display, and integrate the various child applications. In this

parent/child model, the user interacts with what appears to be a single

application.

In reality, they are interacting with several independent applications, published by

different teams. Refer to this reference architecture to learn how to implement

micro-frontends using a server-side rendering approach with AWS services.

30

https://aws.amazon.com/blogs/architecture/micro-frontend-architectures-on-aws/
https://d1.awsstatic.com/architecture-diagrams/ArchitectureDiagrams/server-side-rendering-micro-frontends-ra.pdf?did=wp_card&trk=wp_card

Amplify Studio

AWS Amplify Studio is a visual interface that allows

developers to easily build and ship complete web

and mobile apps in hours. With Amplify Studio, you

can quickly create rich user interface (UI) React

components, and connect a UI to your back-end in

clicks. Amplify Studio exports all UI and

infrastructure artifacts as code that you would write

yourself, so you can maintain full control over your

app design and behavior.

Amplify Hosting

AWS Amplify Hosting is a fully managed CI/CD and

hosting service for fast, secure, and reliable static

and server-side rendered apps that scale with your

business. Amplify Hosting supports modern web

frameworks such as React, Angular, Vue, Next.js,

Gatsby, Hugo, Jekyll, and more.

AWS makes it easy to design, build, and host your headless front-ends. AWS Amplify is a complete solution that lets you build,

ship, and host full-stack applications on AWS:

Headless

31

https://aws.amazon.com/amplify/studio
https://aws.amazon.com/amplify/hosting
https://aws.amazon.com/amplify/

Read the story »

Contentful Headless CMS by Kin + Carta in AWS Marketplace »

Kin + Carta builds an end-to-end platform for Cazoo

using MACH architectural principles on AWS

Learn about how Kin + Carta designed, built, and operationalized an end-to-end platform for

Cazoo—UK’s used car sales unicorn startup—in just 4 months. With Cazoo, customers can now

choose from thousands of top quality cars, pay with a credit card, choose part-exchange or other

financing options, and get their chosen vehicle to their doorstep in as little as 72 hours. Kin + Carta

provides both, the technical expertise, as well as the strategic change adoption, to ensure a smooth

and successful switchover to modern MACH architecture.

AWS Partner MACH spotlight

32

https://www.kinandcarta.com/en-us/case-studies/cazoo/
https://aws.amazon.com/marketplace/pp/prodview-5kevvczcuxg36?sr=0-1&ref_=beagle&applicationId=AWSMPContessa

Daniele Stroppa
AWS Retail & CPG Partners and Solutions Architecture Leader, AWS

Daniele leads solutions architecture and technical strategy for Retail & CPG partners on AWS. Daniele is passionate

about modern software development methodologies and helping developers delivering the best results. Over his 15-

years career, Daniele helped organizations across the Telco, Travel & Hospitality, and CPG industries build scalable,

resilient, and modern applications. He holds degrees from the University of Milan and the University of Bradford.

Krithika Ganesamoorthi
Global Partner Solutions Architecture Leader, Consumer Verticals, AWS

MACH Alliance Technology Council Co-Chair

Krithika Ganesamoorthi is a Global AWS Solutions Architecture Leader for AWS Partners in consumer verticals.

Leveraging her experience, she is responsible for solutions architecture and the technical strategy for technology and

consulting partners on AWS. She recruits, nurtures, and helps partners transform their solutions on AWS. She is an

advocate for partners within Amazon Retail, AWS Sales, and AWS Product teams.

About the authors

33

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Since the launch of AWS in 2006, we’ve supported retailers and partners to build modern

architectures to facilitate rapid change and innovation with their websites and software

applications. This includes the use of microservices, APIs, and a build-for-the-cloud design.

AWS offers numerous benefits that make it the ideal platform for building MACH solutions.

Its comprehensive suite of services, API-first approach, cloud-native design, and headless

solution provider capabilities provide businesses with a reliable and robust cloud

infrastructure to build, deploy, and manage their MACH applications with ease.

Find AWS Partners in MACH

Getting started with MACH on AWS

Download AWS Partners in MACH infographic »

34

https://partner-resources.awscloud.com/retail/great-mach-runs-on-aws2

