
内製の著作権管理システムをGCPからAWS

へ
—移行を通して見えた「設計の真価」

株式会社毎日放送
山下遼河

第8回AWSメディア勉強会

1

©Mainichi Broadcasting System, Inc. All Rights Reserved.

著作権管理システム

システムが担う業務

- データ取り込み(楽曲利用や再生数等)

- 楽曲の使用報告書の作成

- 配分報告書の作成

前提

- 内製・内部向け（外部公開サービスではない）

- データ処理/バッチが多く、変更も度々入る

- 「回り続けること」が価値の中心

2

©Mainichi Broadcasting System, Inc. All Rights Reserved.

内製の内部向けシステムの設計

3

可用性・冗長化・オートスケールを盛りすぎる

作るのも運用するのも重い

要件にピッタリ合わせようとして設計が細かくなりすぎる

単純に設計をするのがしんどい

仕様変更や引き継ぎに弱い

完璧ではないが、壊れても戻せる・回し続けられる

「運用と開発が続けられること」を優先

©Mainichi Broadcasting System, Inc. All Rights Reserved.

内製の内部向けシステムの設計

4

可用性・冗長化・オートスケールを盛りすぎる

作るのも運用するのも重い

要件にピッタリ合わせようとして設計が細かくなりすぎる

単純に設計をするのがしんどい

仕様変更や引き継ぎに弱い

完璧ではないが、壊れても戻せる・回し続けられる

「運用と開発が続けられること」を優先今回目指した設計→

©Mainichi Broadcasting System, Inc. All Rights Reserved.

移行後システムの設計軸

5

1. 調査性

- システムが問題を起こしたとき、どこまで内部状態

を把握し、原因に近づける設計になっているか

2. 同型性

- ローカル・ステージング・本番がどれくらい

同じ構造で動くか

3. 複雑さの上限

- 今後の運用・引き継ぎ・変更に耐えられるよう、

コストと許容できる複雑さのラインをどこに置くか

©Mainichi Broadcasting System, Inc. All Rights Reserved.

旧システム構成

6

Google Cloudを中心に構築

- Cloud Run + αのシンプル構成

- Rails + Reactのバック/フロントエンド

で構築

- HTTPリクエスト駆動を前提とした構成

つらかったこと(例)

- 調査性の問題

- コンテナに入っての作業ができない

- 非同期モデルの問題

- 非同期処理がPub/Sub経由

©Mainichi Broadcasting System, Inc. All Rights Reserved.

新システム構成

7

©Mainichi Broadcasting System, Inc. All Rights Reserved.

判断軸①調査性

8

©Mainichi Broadcasting System, Inc. All Rights Reserved.

判断軸①調査性

9

ECS(Fargate)へのアプリのデプロイ

- コンテナに入ってのデバッグが可能

- 実行中コンテナの状態をそのまま確認できる

Slackへのエラー+ログ通知

- 何かが起こったとき簡単に確認ができる

TiDBの導入

- Webの管理画面からSQLを簡単に実行可能

- ボタン1つで現在のDBをコピーしたブランチDBが作成できる

©Mainichi Broadcasting System, Inc. All Rights Reserved.

判断軸②同型性

10

©Mainichi Broadcasting System, Inc. All Rights Reserved.

判断軸②同型性

11

非同期処理の前提を固定

- 非同期処理を Sidekiq + Redis に統一

- ローカルはコンテナで立てた Redis、本番は本番用 Redis に向き先

を変えるだけ

環境差異の少なさ

- ローカル／本番で同じ非同期実行経路

開発・検証フローの一貫性

- ローカルで再現できた非同期挙動をそのまま本番に持ち込める

- 環境差異を前提にした特別な実装や検証手順が不要

©Mainichi Broadcasting System, Inc. All Rights Reserved.

判断軸③複雑さ上限

12

©Mainichi Broadcasting System, Inc. All Rights Reserved.

判断軸③複雑さ上限

13

NATはEC2で”必要十分”に寄せる

- NAT Gatewayは小規模利用はコスト的に過剰になる

- NATをEC2にしても複雑さは大して変わらない

RedisはEC2で、用途をSidekiqに限定

- Redisは非同期処理のタスクのキューイングのみの使用

- キューが消失しても再度入れたらよく業務影響が小さいため、

可用性よりもコストの観点からEC2を選択

SPOF を“許容した上で管理する”

- SPOFをなくすのではなく、上手く付き合える設計・運用にする

©Mainichi Broadcasting System, Inc. All Rights Reserved.

曲芸→撤退

14

曲芸の導入

- 当初は規模のわりにはALBも過剰になると考えた

- そこで、NAT InstanceにFargate経由で立てたコンテナへのルートテ

ーブルを動的に追加する(加えてCloudFrontの向き先をNAT Instance

にする)という実装を行った

撤退

- 作った後に”キッショ誰が分かるんだよ”となった

- 後任の理解も大変だし、セキュリティ的にも微妙だしということで

大人しくALBの導入をした

- Keep It Simple, Stupid

©Mainichi Broadcasting System, Inc. All Rights Reserved.

新システム移行時に同時に導入したこと

15

CDKによるIaCの導入

- 本番/ステージングをさくっとデプロイ

CI/CD周りの整備

- GitHub Actionsでpush時にテストが実行されるように

- 特定branchへのmergeをトリガーにデプロイを実行

Slack通知

- 必要最低限の簡単なエラー・ログを通知

©Mainichi Broadcasting System, Inc. All Rights Reserved.

まとめ

16

最適化より、継続可能性を最適化する

- 月額・性能・理想構成より、「楽に(自分も後任も)運用できる」を優先した

調査性・同型性・複雑さ上限を最初に決める

- 本番で何ができるか／ローカルと何を揃えるか／どこまで複雑にしていいか

壊れていいものとダメなものを分ける

- 非同期キューは再実行前提、でも業務データは守る

自動化は“効くところだけ”入れる

- CDK・CI/CD・Slack通知で、SREごっこはしない

©Mainichi Broadcasting System, Inc. All Rights Reserved.

TV局、テックブログやってます。

MBSテックブログ

17

	スライド 1: 内製の著作権管理システムをGCPからAWSへ — 移行を通して見えた「設計の真価」
	スライド 2: 著作権管理システム
	スライド 3: 内製の内部向けシステムの設計
	スライド 4: 内製の内部向けシステムの設計
	スライド 5: 移行後システムの設計軸
	スライド 6: 旧システム構成
	スライド 7: 新システム構成
	スライド 8: 判断軸① 調査性
	スライド 9: 判断軸① 調査性
	スライド 10: 判断軸② 同型性
	スライド 11: 判断軸② 同型性
	スライド 12: 判断軸③ 複雑さ上限
	スライド 13: 判断軸③ 複雑さ上限
	スライド 14: 曲芸→撤退
	スライド 15: 新システム移行時に同時に導入したこと
	スライド 16: まとめ
	スライド 17: TV局、テックブログやってます。

